4,170 research outputs found

    Modelling and experimental validation of a fluidized bed reactor freeboard region: application to natural gas combustion

    Get PDF
    A theoretical and experimental study of natural gas-air mixture combustion in a fluidized bed of sand particles is presented. The operating temperatures are lower than a critical temperature of 800 °C above which the combustion occurs in the vicinity of the fluidized bed. Our study focusses on the freeboard zone where most of the methane combustion takes place at such temperatures. Experimental results show the essential role of the projection zone in determining the global thermal efficiency of the reactor. The dense bed temperature, the fluidizing velocity and the mean particle diameter significantly affect the thermal behaviours. A model for natural gas-air mixture combustion in fluidized beds is proposed, counting for interactions between dense and dilute regions of the reactor [Pré et al. (1998)] supplemented with the freeboard region modelling of Kunii-Levenspiel (1990). Thermal exchanges due to the convection between gas and particles, and due to the conduction and radiation phenomena between the gas-particle suspension and the reactor walls are counted. The kinetic scheme for the methane conversion is that proposed by Dryer and Glassman (1973). Model predictions are in good agreement with the measurements

    Steel Primer Chamber Assemblies for Dual Initiated Pyrovalves

    Get PDF
    A solution was developed to mitigate the potential risk of ignition failures and burn-through in aluminum primer chamber assemblies on pyrovalves. This was accomplished by changing the assembly material from aluminum to steel, and reconfiguration of flame channels to provide more direct paths from initiators to boosters. With the geometric configuration of the channels changed, energy is more efficiently transferred from the initiators to the boosters. With the alloy change to steel, the initiator flame channels do not erode upon firing, eliminating the possibility of burn-through. Flight qualification tests have been successfully passed

    Introducing innovative cellular therapies into the clinic: a 2-year retrospective experience of a chimeric antigen receptor T-cell programme at a single centre in Switzerland

    Full text link
    AIM OF THE STUDY Chimeric antigen receptor T (CAR-T) cells are a powerful form of immune-cell therapy for patients with relapsed/refractory B-cell lymphoma and acute B lymphoblastic leukaemia. CAR-T cells have been commercially available in Switzerland since 2018. Because of the complexity and costs of this treatment it is critical to review patient outcomes in real-world settings, to examine whether the promising results from pivotal trials can be reproduced and to identify clinical parameters that determine their efficacy. METHODS Here we present results of a retrospective study analysing outcomes of patients treated with CAR-T cells in a single academic centre in Switzerland during the first two years after commercial approval (BASEC-No. 2020-02271). Cytokine release syndrome (CRS), immune-cell associated neurotoxicity syndrome (ICANS), responses to treatment, ancillary laboratory studies and administrative specifics of CAR-T treatment were examined and are discussed. RESULTS From October 2018 to August 2020 CAR-T cell therapy was evaluated in 34 patients, mostly with relapsed/refractory aggressive B-cell lymphoma (87% had refractory disease). Thirty-one patients underwent leukapheresis. Three of 31 patients (9.6%) died of rapid disease progression before the CAR-T cell product was delivered, two patients were enrolled into a clinical trial, three patients were not given CAR-T cells for other reasons. Ultimately, 23 patients were infused with a commercial CAR-T cell product and included in this analysis. Fourteen (61%) patients received bridging therapy while waiting for a median of 41 days (range 31-62) for delivery of the CAR-T cell product. Toxicity and severe side effects were rare (CRS >3 in 13%, ICANS > grade 3 in 10% of patients), manageable and resolved completely thereafter. The best overall response rate was 65%, with complete responses in 38% of lymphoma patients. At 12 months postinfusion, 61% of patients were alive and 35% progression free. With a median follow-up of 14 months, 13/23 (56%) patients were alive at the time of writing. CONCLUSION CAR-T cell therapy proved to be safe and manageable under adequate hospital conditions. Outcomes resemble results from pivotal trials. The majority of patients was heavily pretreated and refractory at the time of CAR-T cell infusion. Patient selection, time point of leukapheresis, bridging strategies and timing of CAR-T cell infusion may be critical to further improve outcomes

    Theory of excited state absorptions in phenylene-based π\pi-conjugated polymers

    Full text link
    Within a rigid-band correlated electron model for oligomers of poly-(paraphenylene) (PPP) and poly-(paraphenylenevinylene) (PPV), we show that there exist two fundamentally different classes of two-photon Ag_g states in these systems to which photoinduced absorption (PA) can occur. At relatively lower energies there occur Ag_g states which are superpositions of one electron - one hole (1e--1h) and two electron -- two hole (2e--2h) excitations, that are both comprised of the highest delocalized valence band and the lowest delocalized conduction band states only. The dominant PA is to one specific member of this class of states (the mAg_g). In addition to the above class of Ag_g states, PA can also occur to a higher energy kAg_g state whose 2e--2h component is {\em different} and has significant contributions from excitations involving both delocalized and localized bands. Our calculated scaled energies of the mAg_g and the kAg_g agree reasonably well to the experimentally observed low and high energy PAs in PPV. The calculated relative intensities of the two PAs are also in qualitative agreement with experiment. In the case of ladder-type PPP and its oligomers, we predict from our theoretical work a new intense PA at an energy considerably lower than the region where PA have been observed currently. Based on earlier work that showed that efficient charge--carrier generation occurs upon excitation to odd--parity states that involve both delocalized and localized bands, we speculate that it is the characteristic electronic nature of the kAg_g that leads to charge generation subsequent to excitation to this state, as found experimentally.Comment: Revtex4 style, 2 figures inserted in the text, three tables, 10 page

    Viral transduction of primary human lymphoma B cells reveals mechanisms of NOTCH-mediated immune escape

    Full text link
    Hotspot mutations in the PEST-domain of NOTCH1 and NOTCH2 are recurrently identified in B cell malignancies. To address how NOTCH-mutations contribute to a dismal prognosis, we have generated isogenic primary human tumor cells from patients with Chronic Lymphocytic Leukemia (CLL) and Mantle Cell Lymphoma (MCL), differing only in their expression of the intracellular domain (ICD) of NOTCH1 or NOTCH2. Our data demonstrate that both NOTCH-paralogs facilitate immune-escape of malignant B cells by up-regulating PD-L1, partly dependent on autocrine interferon-? signaling. In addition, NOTCH-activation causes silencing of the entire HLA-class II locus via epigenetic regulation of the transcriptional co-activator CIITA. Notably, while NOTCH1 and NOTCH2 govern similar transcriptional programs, disease-specific differences in their expression levels can favor paralog-specific selection. Importantly, NOTCH-ICD also strongly down-regulates the expression of CD19, possibly limiting the effectiveness of immune-therapies. These NOTCH-mediated immune escape mechanisms are associated with the expansion of exhausted CD8+ T cells in vivo.© 2022. The Author(s)

    An ultra-deep sequencing strategy to detect sub-clonal TP53 mutations in presentation chronic lymphocytic leukemia cases using multiple polymerases

    Get PDF
    Chronic lymphocytic leukaemia (CLL) is the most common clonal B-cell disorder characterized by clonal diversity, a relapsing and remitting course, and in its aggressive forms remains largely incurable. Current front-line regimes include agents such as fludarabine, which act primarily via the DNA damage response pathway. Key to this is the transcription factor p53. Mutations in the TP53 gene, altering p53 functionality, are associated with genetic instability, and are present in aggressive CLL. Furthermore, the emergence of clonal TP53 mutations in relapsed CLL, refractory to DNA-damaging therapy, suggests that accurate detection of sub-clonal TP53 mutations prior to and during treatment may be indicative of early relapse. In this study, we describe a novel deep sequencing workflow using multiple polymerases to generate sequencing libraries (MuPol-Seq), facilitating accurate detection of TP53 mutations at a frequency as low as 0.3%, in presentation CLL cases tested. As these mutations were mostly clustered within the regions of TP53 encoding DNA-binding domains, essential for DNA contact and structural architecture, they are likely to be of prognostic relevance in disease progression. The workflow described here has the potential to be implemented routinely to identify rare mutations across a range of diseases

    Truncated and Helix-Constrained Peptides with High Affinity and Specificity for the cFos Coiled-Coil of AP-1

    Get PDF
    Protein-based therapeutics feature large interacting surfaces. Protein folding endows structural stability to localised surface epitopes, imparting high affinity and target specificity upon interactions with binding partners. However, short synthetic peptides with sequences corresponding to such protein epitopes are unstructured in water and promiscuously bind to proteins with low affinity and specificity. Here we combine structural stability and target specificity of proteins, with low cost and rapid synthesis of small molecules, towards meeting the significant challenge of binding coiled coil proteins in transcriptional regulation. By iteratively truncating a Jun-based peptide from 37 to 22 residues, strategically incorporating i-->i+4 helix-inducing constraints, and positioning unnatural amino acids, we have produced short, water-stable, alpha-helical peptides that bind cFos. A three-dimensional NMR-derived structure for one peptide (24) confirmed a highly stable alpha-helix which was resistant to proteolytic degradation in serum. These short structured peptides are entropically pre-organized for binding with high affinity and specificity to cFos, a key component of the oncogenic transcriptional regulator Activator Protein-1 (AP-1). They competitively antagonized the cJun–cFos coiled-coil interaction. Truncating a Jun-based peptide from 37 to 22 residues decreased the binding enthalpy for cJun by ~9 kcal/mol, but this was compensated by increased conformational entropy (TDS ≤ 7.5 kcal/mol). This study demonstrates that rational design of short peptides constrained by alpha-helical cyclic pentapeptide modules is able to retain parental high helicity, as well as high affinity and specificity for cFos. These are important steps towards small antagonists of the cJun-cFos interaction that mediates gene transcription in cancer and inflammatory diseases

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore